

WJEC England GCSE Chemistry

Topic 8: Energy changes in chemistry

Notes

(Content in bold is for Higher Tier only)

www.pmt.education

▶ Image: Second Second

Energy transfer during exothermic and endothermic reactions

- When chemical reactions occur, energy is transferred to or from its surroundings it is conserved.
 - o The amount of energy at the beginning is the same as at the end.

Exothermic reactions

- An exothermic reaction is one that transfers energy to the surroundings so the temperature of the surroundings increases.
- Examples of exothermic reactions include; combustion, many oxidisation reactions and neutralisation.
- Everyday examples of exothermic reactions include; self-heating cans (e.g for coffee) and hand warmers.

Endothermic reactions

- An endothermic reaction is one that takes in energy from the surroundings so the temperature of the surroundings decreases.
- Examples of endothermic reactions are thermal decomposition and the reaction of citric acid and sodium hydrogencarbonate.
- Some sports injury packs are based on endothermic reactions.

Reaction profiles

- Chemical reactions can occur only when reacting particles collide with each other and with sufficient energy.
 - Activation energy = minimum amount of energy that particles must have to react
- Reaction profiles can be used to show the relative energies of reactants and products, the activation energy and the overall energy change of a reaction.

The energy change of reactions

- During a chemical reaction:
 - o Energy must be SUPPLIED to BREAK bonds in the reactants
 - o Energy is RELEASED when bonds in the products are FORMED
 - Energy needed to BREAK bonds and energy RELEASED when bonds are formed can both be calculated from bond energies
 - Sum of energy to break bonds sum of energy released when bonds form = overall energy change
- Energy needed to break > energy released ENDOTHERMIC
- Energy needed to break < energy released EXOTHERMIC

Chemical cells

• Produces a potential difference until the reactants are used up

Fuel cells

- Supplied by an external source of fuel (eg hydrogen) and oxygen or air
 - o Oxidised electrochemically within the fuel cell to produce a potential difference
 - o Overall reaction in a hydrogen fuel cell involves the oxidation of hydrogen to produce water
 - These offer a potential alternative to rechargeable cells & batteries

- Advantages
 - o Greater efficiency
 - o Better for environment only produces water
- Disadvantages
 - 0 Transport of hydrogen difficulties
 - 0 Production of hydrogen difficulties
 - o Explosiveness of hydrogen make it dangerous

Practical assessments

• SP8 Determination of the amount of energy released by a fuel

🕟 www.pmt.education